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Abstract — Induction heating-based assembly and disas-
sembly of axi-symmetric shrink fits is modeled. The task 
represents a triply coupled evolutionary problem character-
ized by mutual interaction of electromagnetic field, tempera-
ture field, and field of thermoelastic displacements. Its nu-
merical solution is performed by a fully adaptive higher-order 
finite element method in monolithic formulation, using a code 
developed by the authors. All nonlinearities of the system 
(magnetic permeability and temperature dependencies of all 
material parameters) are respected. The methodology is illus-
trated by a typical example whose results are discussed.  

I. INTRODUCTION 
Shrink fits are widely used in numerous modern indus-

trial technologies (production of shrunk-on rings, tires of 
railway wheels, armature bandages in electrical machines, 
fixing of machine tools, etc.). They are often realized by 
local induction heating of one metal part with the aim to 
increase its internal dimensions, inserting there another 
metal part, and consequent cooling of the whole system. 

Modeling of the above phenomena, however, is still a 
complicated business, because the problem of both assem-
bly and disassembly is evolutionary, includes interactions 
among three nonlinear physical fields (electromagnetic 
field, temperature field, and field of thermoelastic dis-
placements), and, in specific cases, also the contact task.  

The papers in the domain are rare. The authors solved 
some problems of induction heating-based thermoelasticity 
in [1] and [2] in the quasi-coupled formulations, with sev-
eral simplifying assumptions. But the solution presented in 
this paper is already on a qualitatively much higher level. 
The model respecting all non-linearities of the system is 
solved in a monolithic formulation by own code based on a 
fully adaptive higher-order finite element method.   

II. FORMULATION OF THE TECHNICAL PROBLEM 
The investigated shrink fit serves for fixing a drill in the 

chuck of a high-revolution drilling machine. The process of 
its assembly and disassembly can be seen in Fig. 1. The 
thermal dilatability of the chuck must be substantially 
higher than that of the drill.  

During the process of assembly the chuck 2 is heated by 
the inductor 3 until its internal diameter exceeds the diame-
ter of the drill 1. The drill is then inserted into the bore and 
the system is cooled until we obtain a shrink fit.  

The disassembly is realized by induction heating of the 
whole system that causes displacements in the chuck 2 
greater than those in the drill 1. In a short time the shrink fit 
is released and the drill can be drawn out of the bore. 

 
Fig. 1. Schematic arrangement of the system 

1–drill, 2–chuck, 3–inductor 

Suppose that the basic geometry of the chuck, drill, and 
torque to be transferred, are known. Now the task is  
• to determine the necessary interference of the shrink 

fit, and   
• to design the inductor (geometry and parameters of the 

field current) that satisfies all requirements concerning 
its assembly and disassembly. 

III. CONTINUOUS MATHEMATICAL MODEL  
Distribution of electromagnetic field in the system is de-

scribed by the equation [3] for magnetic vector potential A  
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where μ  denotes the magnetic permeability, γ  the electric 
conductivity and extJ  is the vector of the external harmonic 
current density in the inductor. Parameter γ  is generally a 
function of the temperature T  and μ  a function of tem-
perature T  and magnetic flux density B .  

Distribution of the temperature field is described by the 
equation [4] 
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where λ  is the thermal conductivity, ρ  denotes the mass 
density and c  the specific heat. All these parameters are 
generally temperature-dependent functions. The internal 
sources only exist during the operation of the inductor. 

The thermoelastic problem is described by the Lamé 
equation in the form [5]  
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where ϕ  and ψ  are coefficients given by the relations 
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Here E  denotes the modulus of elasticity and ν  the 
Poisson coefficient of the contraction. Finally, 

( ), ,r zu u uϕ=u  represents the vector of the displacement, 

Tα  the coefficient of the thermal dilatability, and f  the 
vector of internal volumetric gravitational and Lorentz 
forces (in comparison with the thermoelastic stresses, how-
ever, these forces are very small and may be neglected). 

IV. NUMERICAL SOLUTION 
The numerical solution of the problem is realized by a 

fully adaptive hp-FEM. At each time level, optimal meshes 
are obtained automatically by independent adaptive proc-
esses. They dynamically change in time in accordance with 
the time evolution of results, respecting different features of 
particular fields. This is possible due to our own multi-
mesh technique that allows us solving multiphysics prob-
lems monolithically, even though each physical field is 
discretized on a geometrically different mesh. This ap-
proach leads to a significant reduction of the size of the 
discrete problem and speeds up the whole computation.  

Our own numerical SW Hermes and Agros [6] were 
used for the computation. They are capable of all the fea-
tures mentioned above [7], such as the higher-order finite 
element method, automatic adaptivity on hp-meshes or as-
sembling the monolithic stiffness matrix on geometrically 
different meshes. 

V. ILLUSTRATIVE EXAMPLE 
We present several results concerning the assembly of a 

shrink fit. The chuck made of a special tool steel is depicted 
in Fig. 2. The inductor formed by a hollow rectangular con-
ductor intensively cooled by water carries harmonic current 
of density 7

ext 6 10J = × A/m2 and frequency 5f = kHz. 

 
Fig. 2. Principal dimensions (in mm) of the chuck and inductor  

In order to secure the torque that has to be transferred 
we used a shrink fit H7/s6 (hole/drill shank) with the maxi-
mum interference 19 μm (which represents the minimum 
necessary radial dilatation ru  of the hole). Figure 3 shows 
the radial dilatations of the diameter of the hole along its 
wall (measured from its bottom part, as shown in Fig. 2) in 
time. The time necessary to reach the required dilatation 

19 μm along the whole wall (dashed line) is about 14 s.  

 
Fig. 3. Distribution of the displacements of the chuck hole in time 

After inserting the cold drill shank (made of special 
steel for machine tools) into the hole the system starts to be 
cooled by fast flowing air (coefficient of convective heat 
transfer 150α = W/m2K). In a short time the hole will 
shrink so that there will be a perfect contact between its 
wall and drill shank. Figure 4 depicts the time evolution of 
the total displacements of the internal surface of the hole at 
its particular points during both its heating and cooling.  

 
Fig. 4. Time evolution of the displacements at particular points of the 

chuck hole during the process of heating (up to 14 s) and cooling (later) 
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